Prerequisites
- An Appwrite project
- An Appwrite table
- An OpenAI API key
- A Pinecone API key
- A Pinecone index
Head to the Appwrite Console then click on Functions in the left sidebar and then click on the Create Function button.


- In the Appwrite Console's sidebar, click Functions.
- Click Create function.
- Under Connect Git repository, select your provider.
- After connecting to GitHub, under Quick start, select the Node.js starter template.
- In the Variables step, add the
PINECONE_API_KEY
, generate it here. Add theOPENAI_API_KEY
, generate it here.For theAPPWRITE_API_KEY
, tick the box to Generate API key on completion. - Follow the step-by-step wizard and create the function.
Once the function is created, navigate to the freshly created repository and clone it to your local machine.
Add the following dependencies to the package.json
file:
npm install @pinecone-database/pinecone openai @langchain/core @langchain/openai @langchain/pinecone langchain
For this example, the function will be able to take both GET
and POST
requests.
For the GET
request, return a static HTML page that will have a form to search the Pinecone index. Meanwhile the POST /search
requests will send the search query to the Pinecone API and return the results. All other POST
requests will trigger the indexing of the Appwrite table into the Pinecone index.
Write the code to return the static HTML page, to do this create a new src/utils.js
file with the following code:
import path from 'path';
import { fileURLToPath } from 'url';
import fs from 'fs';
const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);
const staticFolder = path.join(__dirname, '../static');
export function getStaticFile(fileName) {
return fs.readFileSync(path.join(staticFolder, fileName)).toString();
}
Write the GET
request handler in the src/main.js
file. This handler will return a static HTML page you'll create later.
import { getStaticFile } from './utils.js';
export default async ({ req, res, error }) => {
if (req.method === 'GET') {
const html = getStaticFile('index.html');
return res.text(html, 200, { 'Content-Type': 'text/html; charset=utf-8' });
}
};
The function will throw an error if any of the required environment variables are missing. The function will return the static HTML page when a GET
request is made.
Create a HTML web page that the function will serve. Create a new file at static/index.html
with some HTML boilerplate:
<!doctype html>
<html lang="en">
</html>
Within the <html>
tag, Add a <head>
tag that will define the style and scripts.
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Pinecone Demo</title>
<script src="https://unpkg.com/meilisearch@0.34.1"></script>
<script src="https://unpkg.com/alpinejs" defer></script>
<link rel="stylesheet" href="https://unpkg.com/@appwrite.io/pink" />
<link rel="stylesheet" href="https://unpkg.com/@appwrite.io/pink-icons" />
</head>
And after the </head>
tag add this <body>
which will contain the actual form:
<body>
<main class="main-content">
<div class="top-cover u-padding-block-end-56">
<div class="container">
<div
class="u-flex u-gap-16 u-flex-justify-center u-margin-block-start-16"
>
<h1 class="heading-level-1">Pinecone Demo</h1>
<code class="u-un-break-text"></code>
</div>
<p
class="body-text-1 u-normal u-margin-block-start-8"
style="max-width: 50rem"
>
Use this demo to verify that the sync between Appwrite Databases and
Pinecone was successful. Search your Pinecone vector database using
the input below.
</p>
</div>
</div>
<div
class="container u-margin-block-start-negative-56"
x-data="{ search: '', results: [ ] }"
x-init="$watch('search', async (value) => { results = await onSearch(value) })"
>
<div class="card u-flex u-gap-24 u-flex-vertical">
<div id="searchbox">
<div
class="input-text-wrapper is-with-end-button u-width-full-line"
>
<input x-model="search" type="search" placeholder="Search" />
<div class="icon-search" aria-hidden="true"></div>
</div>
</div>
<div id="hits" class="u-flex u-flex-vertical u-gap-12">
<template x-for="result in results">
<div class="card">
<pre x-text="JSON.stringify(result, null, '\t')"></pre>
</div>
</template>
</div>
</div>
</div>
</main>
<script>
window.onSearch = async function (prompt) {
const response = await fetch('/search', {
method: 'POST',
body: JSON.stringify({ prompt }),
headers: {
'Content-Type': 'application/json',
},
});
return response.matches;
};
</script>
</body>
This will render a form that will submit your search query to the function and display the results.
Add methods necessary to integrate with the OpenAI and Pinecone APIs
Import openai
and @pinecone-database/pinecone
at the top of the main.js
file:
import { Pinecone } from '@pinecone-database/pinecone';
import { OpenAI } from 'openai';
Add the following code at the end of request handler in the main.js
file:
const openai = new OpenAI();
const pinecone = new Pinecone();
const pineconeIndex = pinecone.index(process.env.PINECONE_INDEX_ID);
The functions checks the request method, and then initializes the OpenAI and Pinecone SDKs.
First add the following imports from LangChain:
import { formatDocumentsAsString } from 'langchain/util/document';
import { ChatOpenAI } from '@langchain/openai';
import { PineconeStore } from '@langchain/pinecone';
import { PromptTemplate } from '@langchain/core/prompts';
import {
RunnableSequence,
RunnablePassthrough,
} from '@langchain/core/runnables';
import { StringOutputParser } from '@langchain/core/output_parsers';
To handle the prompt requests, add the following code to the end of the request handler in the main.js
file:
if (req.path === '/prompt') {
if (!req.body.prompt || typeof req.body.prompt !== 'string') {
return res.json(
{ ok: false, error: 'Missing required field `prompt`' },
400
);
}
const vectorStore = await PineconeStore.fromExistingIndex(
new OpenAIEmbeddings(),
{ pineconeIndex }
);
const prompt = PromptTemplate.fromTemplate(
`Answer the question based with following context:{context}\nQuestion: {question}`
);
const chain = RunnableSequence.from([
{
context: vectorStore.asRetriever().pipe(formatDocumentsAsString),
question: new RunnablePassthrough(),
},
prompt,
new ChatOpenAI(),
new StringOutputParser(),
]);
const result = await chain.invoke(req.body.prompt);
return res.json({ ok: true, completion: result }, 200);
}
This code will handle the prompt requests by creating a LangChain sequence that will format the rows as strings, prompt the user for a question, and then use the OpenAI API to generate a response. The response is then parsed and returned to the user.
The Appwrite table needs to be indexed into the Pinecone index. Create a new file at src/appwrite.js
with the following code:
import { Client, TablesDB, Query } from 'node-appwrite';
export default class AppwriteService {
constructor() {
const client = new Client();
client
.setEndpoint(
process.env.APPWRITE_ENDPOINT ?? 'https://<REGION>.cloud.appwrite.io/v1'
)
.setProject(process.env.APPWRITE_FUNCTION_PROJECT_ID)
.setKey(process.env.APPWRITE_API_KEY);
this.tablesDB = new TablesDB(client);
}
async getAllRows(databaseId, tableId) {
const cumulative = [];
let cursor = null;
do {
const queries = [Query.limit(100)];
if (cursor) {
queries.push(Query.cursorAfter(cursor));
}
const { rows } = await this.tablesDB.listRows(
databaseId,
tableId,
queries
);
if (rows.length === 0) {
break;
}
cursor = rows[rows.length - 1].$id;
cumulative.push(...rows);
} while (cursor);
return cumulative;
}
}
The service provides a method to iterate the rows contained within an entire table, fetching the limit of 100 rows per request.
const appwrite = new AppwriteService();
const appwriteRows = await appwrite.getAllRows(
process.env.APPWRITE_DATABASE_ID,
process.env.APPWRITE_TABLE_ID
);
const rows = appwriteRows.map(
(row) =>
new Row({
metadata: { id: row.$id },
pageContent: Object.entries(row)
.filter(([key, _]) => !key.startsWith('$'))
.map(([key, value]) => `${key}: ${value}`)
.join('\n'),
})
);
await PineconeStore.fromDocuments(rows, new OpenAIEmbeddings(), {
pineconeIndex,
maxConcurrency: 5,
});
Within our function handler, the service is instantiated and used to create an array of LangChain documents. LangChain documents can then be used with the PineconeStore.fromDocuments
method to retrieve embeddings from OpenAI and upsert them to your Pinecone index.
Now that the function is deployed, test it by visiting the function URL in your browser. This should show the UI created earlier and to test it, write a prompt and click the submit button. After a brief moment you should see the matched results.